
Better Pedestrian Intention Estimation for Autonomous Driving

Tianchen Ye
jackye@umich.edu

Tong Jin
tongjin@umich.edu

Xiang Shen
xsh@umich.edu

Xiang Lian
lianx@umich.edu

Yigao Fang
fgsepter@umich.edu

Abstract

Avoiding crossing pedestrians is one of the most im-
portant tasks for a secure autonomous driving applica-
tion and estimating pedestrian’s intention is the essence
of any solution to this task. Aiming to tackle the intention
estimation problem, this paper will utilize the Pedestrian
Intention Estimation Dataset (PIE), which consists of
high-resolution driving footage and meticulously anno-
tated pedestrian information [2]. Temporal sequences of
the pedestrian images will be extracted from the footage
and used to train and test our deep neural network model
which predicts the pedestrian’s intention to cross. Our
model offers an accuracy rate of 77.5%, outperforming
Rasouli’s baseline model with context image inputs. Our
modified dataset interface and neural network model
can be found at: https://gitlab.eecs.umich.
edu/xsh/eecs442_pj

1. Introduction

High-level autonomous driving has been the focus of
numerous computer vision research for years. One of
the major challenges of ensuring the safety of highly au-
tonomous vehicles is the difficulty of tracking and un-
derstanding pedestrian behaviors. In 2018, an Uber au-
tonomous testing vehicle failed to react to a crossing
pedestrian and fatally struck her at a speed of 43 mph.
The incident is a clear indication of our current weakness
in predicting pedestrian behavior, which has to be ad-
dressed before highly autonomous vehicles can be safely
deployed.

The recent rapid development in Multiple Object
Tracking (MOT) techniques, starting from the classi-
cal object tracking algorithms such as CSRT, KCF, and
MOSSE [1], which generally provides lower MOTA,
to the state of the art FairMOT model which achieves
real-time tracking with MOTA up to 0.73, has signifi-
cantly expanded our capacity to track the trajectories of
pedestrians[5]. Therefore, it is high time that we shifted

our focus to the more crucial and sophisticated problem
of understanding pedestrian behaviors.

One of the leading researchers in studying pedestrian
behavior prediction is Amir Rasouli at York University.
In 2017, Rasouli published a paper on pedestrian cross-
walk behavior together with a large-scale dataset called
Joint Attention in Autonomous Driving (JAAD)[3][4].
In the paper, he focused on classifying pedestrians’
behaviors and determining whether they are currently
crossing. Then, Rasouli published another paper in 2019
with an even more comprehensive dataset called Pedes-
trian Intention Estimation (PIE). He asserted that it is
crucial for autonomous vehicles to predict pedestrians’
intention to cross before they actually do so, leaving
more time for the vehicle to react. He proposed a deep
learning model that can not only estimate pedestrians’
intention but also predict the future trajectory of the
pedestrians, using CNN and RNN networks.

Rasouli’s model greatly inspired us when we make
our own neural network design. However, unlike his
model which also predicts the future trajectory of the
pedestrian, our model will mainly focus on the inten-
tion estimation task. We will seek improvement by
upgrading its obsolete CNN model, VGG16, to res-
Net18. We will replace its Tensorflow Convolutional
LSTM pipeline with a PyTorch-compatible feature-
vector LSTM pipeline. We will also use the cross-
entropy loss instead of the mean squared error metrics
due to our focus on the intention estimation task.

2. Approach

2.1. Extract the Pedestrian Images

PIE dataset provides us with numerous 10-minute
video clips showing the scene in front of the vehicles,
taken by onboard cameras. Predicting the intention of
pedestrians to cross the road directly from such a large-
scale video dataset can be difficult and time-consuming.
Without access to powerful computational resources, we
apply several preprocessing methods to make training

1

https://gitlab.eecs.umich.edu/xsh/eecs442_pj
https://gitlab.eecs.umich.edu/xsh/eecs442_pj


feasible and efficient.
First, video sets 1,2,5,6 are chosen and used for train-

ing, validation, and testing. Since the relative difference
between adjacent frames is small for most images, we
will extract one image from every two frames to reduce
the memory and loading time. The extracted images with
an original dimension of 1920 × 1080 are then resized
1600 × 900. This is process is illustrated in step one of
Figure 1.

The second step is to crop images that focus on in-
dividual pedestrians. In the PIE dataset, each individ-
ual pedestrian is provided with the ground truth inten-
tion probability for the pedestrian to cross the road and
the bounding box as well, which contains the location
of each pedestrian. For each pedestrian, we crop a
128 × 128 image around the bounding box to contain
the context of the pedestrians, and zero-padding is added
when dealing with border cases as shown in Step 2 of
Figure 1.

Since the duration that each pedestrian appears in
the video varies, we will obtain different numbers of
128×128 images for each individual pedestrian from the
previous. In order to batch different pedestrians together
and make the training set consistent, we define a param-
eter sequence size, which denotes the number of images
that we will sample uniformly from the original the se-
quences. For pedestrians with overly short clips which
fall below sequence size threshold, we simply discard
them. Now all the pedestrians will have the same num-
ber of image inputs.

Figure 1. Flow Diagram of Pedestrian Extracting

The final step is loading the data. We created a
list that stores the pedestrian image sequence and a
Boolean intention variable derived from the ground-truth
pedestrian intention probability, which will serve as the

label of our classification task. Each image is nor-
malized and stored as a PyTorch float tensor of shape
sequence size× 3× 128× 128, and intention probabil-
ity will be a scalar tensor with a value of either 0 or 1.
We shuffle the list in order to add additional stochasticity
to our training process and use the Dataloader to load the
train, validation, and test data under a ratio of 5:4:1.

To save work for reading all the annotations and at-
tributes, we rewrite pedestrians’ intention probability to
a comma-separated value file with a key-value pair for-
mat of (PID, intention probability), so that we can
read it directly using Google Colab.

2.2. Recurrent Neural Networks

The PIE baseline model is a complex RNN network
with the Tensorflow environment. On this basis, we de-
signed our own network using the PyTorch environment.

Figure 2. Recurrent Neural Network Architecture

As shown in Figure 2, we utilize pretrained res-Net18
network as our CNN to extract features from the input
image sequence. Compared with the VGG16 network
used in the PIE dataset, res-Net18 gives us faster and
more accurate prediction results. Hence we decide to
choose it as our CNN model. The total number of CNN
components equals sequence size. The input of each
CNN is a sequence size×3×128×128 image sequence
for each pedestrian. We input the image sequence to sev-
eral CNN components and add Drop Out layers followed
by fully connected layers after each CNN component.
This structure helps match the input size of the LSTM
cell with the output size of our CNN as well as reduc-
ing the possibility of over-fitting. The RNN architec-
ture receives the feature representation of the image area
around the pedestrian and by adding the softmax layer
on its output, we get our prediction on the probability
of the pedestrian’s intention. We utilize Cross-Entropy
Loss as our loss function and ADAM algorithm as our
optimizer to train the network. We also use Xavier dis-
tribution for the initialization of RNN architecture. The
output of this RNN architecture is a binary classification
for each pedestrian showing whether they have the inten-

2



tion to cross the road. Using this RNN architecture, we
finally receive 77.5% accuracy of predicting the pedes-
trian intention.

3. Experiments
Pedestrian intention estimation for autonomous driv-

ing is a binary classification problem. We need to predict
whether the given pedestrian has the intention to cross
the road. Given the sets of pedestrian images extracted
from the video and the ground truth intention probabil-
ity, we are able to train the network and give intention
probability predictions for practical application.

We use validation accuracy as our performance met-
rics. It is a quantitative metric, indicating the percentage
of pedestrians that we gave a correct prediction for their
intention. To experiment with the performance of our
model, We split the dataset into a training set for train-
ing the model, a validation set for tuning hyperparame-
ters, and a test set for measuring the final performance.

There are totally five hyperparameters for choos-
ing: sequence size influences the size of the training
dataset, learning rate, weight decay, num epoch,
batch size influence the performance of the RNN
model. Larger sequence size may result in much longer
running time and memory usage, which may be ineffi-
cient. Hence we choose sequence size = 15 for better
performance.

We then apply Grid Search to find the best values for
learning rate and weight decay. The validation ac-
curacy for certain choices of hyperparameter values are
recorded below in Table 1:

Table 1. Grid Search for Finding Best Hyperparameters

learning rate weight decay Validation Accuracy
6× 10−6 0.1 75.875%
9× 10−6 0.1 76.5%
12× 10−6 0.1 76.25%
6× 10−6 1 75.625%
9× 10−6 1 76.875%
12× 10−6 1 76.25%
6× 10−6 10 75.375%
9× 10−6 10 75.75%
12× 10−6 10 74.875%

We also test other choices of hyperparameters dur-
ing the process, but due to the page limitation, we only
record nine of them. According to Table 1, we finally
choose:

learning rate = 9× 10−6

weight decay = 1

Batch size denotes the number of pedestrians we

train at one time. We choose batch size = 10 so that
our model gives the best efficiency.

A relatively small number of epochs may lead to
under-fitting, while a larger number of epochs may eas-
ily result in over-fitting. We should pick the epoch with
the lowest validation loss.

Figure 3 indicates the graph of training accuracy and
validation accuracy concerning the number of epochs.
After some testing, we finally choose the number of
epochs equals 5. Training accuracy keeps increasing af-
ter epoch 5, while validation accuracy remains relatively
the same. To avoid over-fitting, epoch 5 is the best point,
and this model gives us a test accuracy of 77.5%

Figure 3. Training and Validation Accuracy vs. Epochs

We apply Cross-Entropy Loss as our Loss function.
For a multi-class classification problem, we apply a soft-
max activation function after the output layer to ob-
tain an n-dimension vector ŷ, where n is the number of
classes to classify, with each entry of ŷ be calculated as:

ŷc =
exp(zc)∑
j exp(zj)

where z is the output logits from the neural network.

With the given ground truth distribution y, the Cross-
Entropy Loss L can be calculated as:

L(y, ŷ) = −
∑
c

yc log ŷc

PyTorch’s CrossEntropyLoss class provides an
implementation for Cross-Entropy Loss, and we can use
it to calculate the Loss value. In our case, it is a binary
classification question, so n = 2. The graph of training
Loss and validation loss with respect to epochs is shown
in Figure 4.

3



Figure 4. Cross Entropy Loss vs. Number of Epochs

According to Figure 4, we see that the training loss
keeps decreasing with respect to the number of epochs,
which fits our expectation. The minimal validation loss
appears at epoch 5, and hence we choose num epoch
equals 5. More epochs may easily lead to over-fitting for
the training data.

4. Implementation

We modified and used the PIE dataset interface to get
our data ready. As is indicated in the approach section,
we use the interface to extract images and intention prob-
abilities while improving the interface by adding im-
age size downsampling and sequence frequency selec-
tion options. All other preprocessing procedures, such
as getting the final 128 x 128 linear sequence images,
are our original work.

Figure 5. Network Architecture Implemented by Rasouli[2]

As shown in Figure 5, the original network archi-
tecture implemented by Rasouli[2] has some additional
components to predict the future trajectory of the pedes-
trian. Our research focuses on the intention estimation
task (the red box) of this architecture, with the main pur-
pose of achieving higher accuracy for predicting the in-
tention probability of the pedestrian, our model is shown
in Figure 2. Taking inspiration from Rasouli’s network,
we implemented our own neural network architecture us-
ing PyTorch. There are three major differences between
the two models. First, we used Resnet as our CNN model

comparing to VGG16 in the baseline model. Second, our
model is implemented using PyTorch while the baseline
model is implemented using Tensorflow and Keras. Fi-
nally, we used the feature-vector LSTM pipeline instead
of convolutional LSTM which is not built in the PyTorch
library.

Of course, there are some further improvements that
can be made to our model. For example, we can use data
augmentation to further regularize our model and facil-
itate better feature extractions. We can also incorporate
the bounding box coordinates and append them to our
feature vector to achieve higher accuracy.

References
[1] Satya Mallic. Object tracking using opencv (c++/python).

In Learn OpenCV, 2017.
[2] Amir Rasouli, Iuliia Kotseruba, Toni Kunic, and John K.

Tsotsos. Pie: A large-scale dataset and models for pedes-
trian intention estimation and trajectory prediction. In In-
ternational Conference on Computer Vision (ICCV), 2019.

[3] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Are
they going to cross? a benchmark dataset and baseline for
pedestrian crosswalk behavior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 206–213, 2017.

[4] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. It’s
not all about size: On the role of data properties in pedes-
trian detection. In ECCVW, 2018.

[5] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun
Zeng, and Wenyu Liu. Fairmot: On the fairness of detec-
tion and re-identification in multiple object tracking. arXiv
preprint arXiv:2004.01888, 2020.

4


