
CONTENTS Project 1 Team 13 Page 1 of 13

Randomness and Pseudorandom Numbers

1 March 2020

GROUP 13

Yigao Fang 518370910032

Haorong Lu 518370910194

Hongdan Wang 518370910209

Abstract

Random numbers are of great importance in applications. Figuring out some efficient and accurate
methods to generate pseudo-random numbers, which are known as pseudo-random number generators, is
what we need to consider. Based on statistics and mathematics principles, we introduce two commonly
used algorithms that can deal with such problems, linear congruential generator(LCG) and Mersenne
twister algorithm. We explore the influence of parameters in LCG equations and choose one of the best
to do the simulation. For each method, we compute four sets of pseudo-random numbers with different
sample sizes and draw the histograms and box plots of them. We also calculate the sample mean and
variance and compare them with the theoretical to show the randomness of our results. Finally, we
analyze the sensitivity of our simulation and give the conclusion.

Keywords: Pseudo-random number, Uniform distribution, LCG, Mersenne twister algorithm.

Contents
1 Introduction 2

1.1 Background . 2
1.2 Pseudo-random Number Generator Algorithm(PNRG) 2

2 Results 4
2.1 Theoretical Result Calculation . 4
2.2 Result of Linear Congruential Generator . 5
2.3 Mersenne Twister Algorithm . 7

3 Discussion and Conclusion 8
3.1 Randomness Analysis . 8
3.2 Sensitivity Analysis . 8
3.3 Conclusion . 8

A LCG Code 10

B Mersenne Twister Algorithm Code 11

Project 1 Team 13 Page 2 of 13

1 Introduction

1.1 Background
Considering a way to create truly random numbers is of great importance in many applications. How-

ever, it is very difficult and time-consuming to do so. Hence pseudo-random numbers are widely used in
practice. The pseudo-random numbers are obtained from some typical mathematical equations so that they
can have some random appearance. In most of the cases, these random numbers are based on some so-called
seed point, such as the detailed time when the number was created. However, these numbers do not truly
distribute randomly. The degree of their randomness depends on the mathematical function and the seed
point we choose. In this paper, we will give two pseudo-random number generator algorithms(PNRG) that
can generate pseudo-random numbers, the method of linear congruential generator and Mersenne twister al-
gorithm. Then we will give some comments on the randomness and sensitivity of the numbers we obtained
from the PNRG.

1.2 Pseudo-random Number Generator Algorithm(PNRG)
Linear Congruential Generator(LCG)

Linear congruential generator(LCG) is one of the earliest and most famous pseudo-random number
generator algorithms. We first have the linear recursive formula as follows

Xn+1 = (aXn + c) mod m (1)

where Xn is the pseudo-random number series we want to obtain, m > 0 is the modulus, a and c are
constant parameters. We assume X0 as the seed point which depends on the detailed time when the random
number is generated.

Consequently, when we choose a suitable set of parameters m, a, and c, a series of pseudo-random
numbers can be obtained. However, the randomness of these numbers is strongly related to the parameters
we choose. Unbefitting parameters may result in terrible numbers which follow some obvious patterns so
that they are not so random as we wish. Analyzing Equation (1), we can find out that the series Xn will
follow a circulation with period T0 concerning the value of a, c, and m. To obtain a pseudo-random number
series, the period should be large enough so that the characteristic of circulation can be ignored. That is

T0 >> n (2)

The period T0 will always less than or equals to m. Hence there are generally two ways to increase the
period:

1. Make a full period(i.e: T0 = m).

2. Make m large enough.

Zhang[1] gives a theorem to indicate the relationship between period T0 and the parameters we choose.
He points out that when the following conditions are satisfied, the period T0 can be a full period which
equals m:

1. (c,m) = 1

1.2 Pseudo-random Number Generator Algorithm(PNRG)Project 1 Team 13 Page 3 of 13

2. For any prime factor p of m, a = 1(mod p)

3. If 4|m, then a = 1(mod 4)

Based on this theorem, the article provides a method to determine the best parameters for LCG. Table
1 gives some good parameters widely used in applications, and we will utilize the parameters of the C++
standard to generate pseudo-random numbers, which are

a = 214013

c = 2531011

m = 232

With these parameters, the series Xn will have a period of 232 − 1. This is an incredibly large number,
hence the circulation property can be ignored under relative small sample size n. The pseudo-random
numbers we obtained are integers ranging from 0 to 232 − 1. The next step is to compress the range to
[0,99]. We divide the origin series Xn by 100 and find the reminder Yn. Consequently, Yn is a series of
numbers range from 0 to 99 with a uniform distribution. This is exactly what we want to obtain.

The detailed results will be covered in the next section and our C++ code is listed in Appendix.

Source Modulus m Multiplier a Increment c
Numerical Recipes 232 1664525 1013904223

Borland C/C++ 232 22695477 1
Microsoft Visual/Quick C/C++ 232 214013 2531011

cc65 232 16843009 826366247
random0 2375 8121 28411

Table 1: Parameters of LCG Widely Used in Applications[2]

Mersenne Twister Algorithm

Mersenne Twister algorithm is an efficient and accurate pseudo-random number generator algorithm that
was put forward in 1997. It is now widely used as a random number generator in programming languages
and libraries. Wikipedia[3] gives an example of a pseudocode of Mersenne twister algorithm, and we apply
Python to do the coding based on this. The main process of this algorithm is illustrated in Figure 1.1. For
an incredibly large sample size, this algorithm works better than the method of LCG. The detailed results
of this method will be covered in the next section and our Python code is listed in the Appendix.

Project 1 Team 13 Page 4 of 13

Figure 1.1: Basic flow sheet for Mersenne Twister Algorithm

2 Results

2.1 Theoretical Result Calculation
Theoretically, the expectation of a uniform distribution within a range of [a,b] should be

E[X] = lim
n→+∞

n∑
i=1

xi ×
1

n
(3)

=
a+ b

2
(4)

while the variance of this uniform distributed random variable is given by

V ar[X] = E[X2]− E[X]2 (5)

=
a2 + ab+ b2

3
− (a+ b)2

4
(6)

=
(a− b)2

12
(7)

Insert a = 0, b = 100 into Equation (4) and Equation (7), we obtain the theoretical value of expectation
and variance of uniform distribution numbers we previously generated using LCG and Mersenne Twister
Algorithm, which are

E[X]t =
0 + 100

2
= 50 (8)

V ar[X]t =
(0− 100)2

12
= 833.3 (9)

2.2 Result of Linear Congruential GeneratorProject 1 Team 13 Page 5 of 13

2.2 Result of Linear Congruential Generator
We first apply the method of linear congruence to generate uniform distribution within the range of

[0,100]. As mentioned in Section 1.2, the value of parameters a, c, and m we choose will strongly influence
the randomness of numbers we obtain. Figure 2.1 illustrates two examples of results that the LCG will
generate under improper choices of parameters.

(a) a5, c=7, m=101 (b) a=65539, c=0, m=231

Figure 2.1: Examples of Some Improper Choice of Parameters

Figure 2.1 (a) indicates the histogram of the distribution of 100 samples with the parameters a=5, c=7,
m=101. This histogram does not have an obvious characteristic of uniform distribution. The mean value X
and variance S2 also have a huge difference with the theoretical value. To make a deeper insight into this
series of samples, we list the fifty twenty data of the 100 samples below:

42 15 82 13 72 64 24 26 36 86
33 71 59 0 2 17 92 63 19 1
12 67 39 0 7 42 15 82 13 72
64 24 26 36 86 33 71 59 0 2
17 92 63 19 1 12 67 39 0 7

According to these samples, we easily find out that this series follows a circulation with period equals
25. The first twenty-five samples are the same as the next twenty-five samples. These bad results may result
from the small value of parameters we choose, as we mentioned before in Section 1.2. This is not what we
want to obtain. Hence we consider a case with large parameters.

Figure 2.1 (b) indicates the 100 samples with the parameters a=65539, c=0, m=231. The selection of
these three parameters is known as the RANDU algorithm of IBM[2] which is widely used in the 1960s.
The distribution will become much more random when the three parameters become larger. Here we choose
to have a huge value of parameters, and hence the histogram we obtain shows more randomness than Figure
2.1 (a) does. This one may seem much better, but still has a terrible appearance. Here we list the first twenty
samples below:

4 80 96 48 16 0 16 80 40 12
0 48 80 40 12 4 16 56 76 8

Obviously, this is a bad series, since all the numbers are even, without any odd numbers. Since 65539 =

2.2 Result of Linear Congruential GeneratorProject 1 Team 13 Page 6 of 13

216 + 3, we can further obtain that

Xn+2 = (216 + 3)Xn+1

= (216 + 3)2Xn

= [6(216 + 3)− 9]Xn

= 6Xn+1 − 9Xn

We should of course avoid such circumstances when generating pseudo-random numbers. Hence we
need to find the most suitable parameters for Equation (1) so that the LCG can work properly and give the
most random distributed series without any regular patterns. We apply the parameters we choose in Section
1.2. We insert these parameters into Equation (1) and choose different sample sizes with n=100, n=1000,
n=10000, and n=100000 respectively. Since n << T0 = m, this simulation will work well. The histograms
are shown below in Figure 2.2

(a) The distribution of 100 samples (b) The distribution of 1000 samples

(c) The distribution of 10000 samples (d) The distribution of 100000 samples

Figure 2.2: Examples of Some Improper Choice of Parameters

According to Figure 2.2 (a), the distribution of 100 samples is not so uniform as we expected due to the
limit of sample size. However, when the amount of sample becomes larger, the distribution becomes much
more uniform, as illustrated in Figure 2.2 (b), (c), and (d). The mean value X and the variance S2 of the
sample are also calculated and illustrated in Figure 2.2.

The first twenty random numbers we generate in the 100000 samples distribution are listed below. We
see that these numbers distribute randomly and do not have any regular patterns.

42 41 0 83 2 9 68 67 86 21
72 91 70 9 44 35 26 57 44 59

To gain a more direct perspective towards the characteristic of the distribution, we draw the box plot
of 100000 samples, which is recorded below in Figure 2.3 As illustrated in Figure 2.3, the box plot has

2.3 Mersenne Twister Algorithm Project 1 Team 13 Page 7 of 13

an obvious symmetric characteristic, with its quartiles q1 roughly equals 24, q2 roughly equals 50, and q3
roughly equals 74. Moreover, a1 equals 0 and a2 equals 99. All of the above are characteristics of a uniform
distribution. Hence we claim that the pseudo-random numbers we generate using LCG follow a uniform
distribution within [0,100].

Figure 2.3: The box plot of the distribution of 100000 samples

2.3 Mersenne Twister Algorithm
Except for LCG, another useful method to generate pseudo-random numbers is Mersenne twister algo-

rithm. [3] gives the pseudocode of this algorithm. Based on the pseudocode introduced in [3], we apply
Python to draw four histograms with sample size 100, 1000, 10000, and 10000 respectively, as illustrated
in Figure 2.4 below.

(a) The distribution of 100 samples (b) The distribution of 1000 samples

(c) The distribution of 10000 samples (d) The distribution of 100000 samples

Figure 2.4: Examples of Some Improper Choice of Parameters

Comparing with Figure 2.2 and Figure 2.4, we find that both methods can generate pseudo-random
numbers with a large sample size. Mersenne twister algorithm is a much accurate method to deal with a
large sample size of random numbers.

Project 1 Team 13 Page 8 of 13

Our code is recorded in the Appendix and the detailed discussion of randomness and sensitivity will be
covered in the next section.

3 Discussion and Conclusion

3.1 Randomness Analysis
According to the what we obtain in Result Section, we have

XLCG,100000 = 49.46

V ar[X]LCG,100000 = 832.77

XMTA,100000 = 49.41

V ar[X]MTA,100000 = 833.37

Comparing the mean and variance of the generated sample with size 100000 with the theoretical value as
illustrated in Equation (7) and (8), we find out that their relative uncertainty is less than 1%. Hence we
can conclude that random numbers we obtain using both these two methods have a uniform distribution
characteristic. Furthermore, based on Figure 2.2, Figure 2.3, and Figure 2.4, we can also find out that their
distribution follows high randomness, as we wish to have.

3.2 Sensitivity Analysis
Selection of Parameters

As illustrated in Section 2.2, the selection of LCG parameters will strongly affect the randomness of
numbers we get. Small values will result in an obvious regular pattern of the series, and hence the pseudo-
random numbers are not what we want to obtain. On the contrary, larger parameters will make the charac-
teristic of circulation less obvious, and hence can obtain a better pseudorandom number.

Sample Size

Figure 2.2 and Figure 2.4 indicate that with a larger sample size, the numbers we get will distribute
much more randomly. Compare the four histograms, one can find out that the distribution of 100 samples
does not have a random and uniform characteristic. The numbers of samples vary a lot in each bin. Things
get much better when we generate 1000 samples and analyze its property. The histogram looks nicer and
the mean and variance are much closer to the theoretical value. When we choose 10000 or 100000 samples,
the distribution looks extremely random and uniform. Hence we can claim that LCG as well as Mersenne
twister algorithm can generate a large sample of pseudo-random numbers under high randomness.

3.3 Conclusion
In this project, we apply the method of LCG and Mersenne twister algorithm to generate pseudo-random

numbers under the uniform distribution. We analyze the influence of parameters in the LCG equation and
the sample size of the numbers. We find out that choosing an incredible large value of parameters a, c, and
m will lead to a reasonable histogram graph. Also, the series mean and variance fit the theoretical value
well.

REFERENCES Project 1 Team 13 Page 9 of 13

Moreover, a larger sample size will lead to a better histogram for the uniform distribution. Hence our
algorithms can deal with circumstances that need a large amount of uniformly distributed random numbers.
The numbers we generated have high randomness which we desire.

References
[1] Zhang, G., & Zhang, X. (2007). The Analysis on the Period of Mixed Linear Congruential Generators.

Journal of Shangqiu Normal University. 1672-3600 (2007) 06-0040-03, 41-42.

[2] Shine-lee. (2018). Algorithm of PNRG. [Web log post]. Retrieved from
https://www.cnblogs.com/shine-lee/p/9516757.html

[3] Mersenne Twister. (2020). Retrieved April 1, 2020. Retrieved from: https://wiki2.org/en/Mersenne
Twister

Project 1 Team 13 Page 10 of 13

A LCG Code
[fragile]

#include<iostream>
#include<time.h>
using namespace std;

class PNRG
{
public:

unsigned int seed, a, c; long long m;
void SetSeed()
//EFFECTS: set the initial value "seed" of PRNG, usually we use

time as seed.
//here time(NULL) represents number of seconds since 1970-1-1
//MODIFIES: seed
{

seed = (unsigned int) time(NULL);
return;

}
void SetParameters(unsigned int a_value, unsigned int c_value,

long long m_value)
//EFFECTS: set values of parameters a, c, m
//MODIFIES: a, c, m
{

a = a_value; c = c_value; m = m_value;
return;

}
unsigned int rand()
//EFFECTS: generate random numbers using seed and parameters
//MODIFIES: seed
{

seed = (a*seed + c) % m;
return seed;

}
};
int main()
{

PNRG myPNRG;
myPNRG.SetSeed(); //initialize seed
myPNRG.SetParameters(214013,2531011,4294967296);

//set parameters(a, c, m)

int n = 100000; //number of random numbers
unsigned int *array = new unsigned int[n]();
unsigned int sum = 0;

Project 1 Team 13 Page 11 of 13

float sum_of_squares = 0;
for (int i = 0; i < n; i++)
{

unsigned int a_PNRG = myPNRG.rand() % 100;
array[i] = a_PNRG;
cout << a_PNRG << ", ";
sum += a_PNRG;

}
float mean = float(sum) / n;
cout << "\nThe mean is " << mean << endl;
for (int i = 0; i < n; i++) sum_of_squares += (array[i] - mean)

*(array[i] - mean);
float variance = sum_of_squares / n;
cout << "The variance is " << variance << endl;
delete[]array;
return 0;

}

B Mersenne Twister Algorithm Code

-*- coding:utf-8 -*-
’’’
This code implements the pseudo-random algorithm Mersenne Twister in python.
Date: 2020/4/2
Arthur: Haorong Lu
’’’
import time
import numpy as np
from matplotlib import pyplot as plt

’’’
Coefficients for MT19937, which is a Mersenne Twister
pseudo-random generator of 32-bit numbers
with a state size of 19937 bits.
Reference: http://www.cplusplus.com/reference/random/mt19937/
’’’
w, n, m, r = 32, 624, 397, 31 # word size, state size, shift size, mask bits
a = 0x9908b0df # XOR mask
u, s, t, l = 11, 7, 15, 18 # tempering u, s, t, l
d, b, c = 0xffffffff, 0x9d2c5680, 0xefc60000 # tempering d, b, c
f = 1812433253 # initialization multiplier
upper_mask = 0x80000000 # most significant w-r bits
lower_mask = 0x7fffffff # least significant r bits

def lowest_32_bits(x):
’’’
EFFECTS: Take the lowest 32 bits of a binary number.
’’’

Project 1 Team 13 Page 12 of 13

return int(0xffffffff & x)

class MT19937:
def __init__(self, seed):

’’’
EFFECTS: Initialize N states according to the given seed point x_0,

generate subsequent n-1 states x_1 to x_{n-1} through operations
such as shift, xor, multiplication, addition, etc.

’’’
self.mert = [0] * n
self.mert[0] = seed
self.index = n
for i in range(1, n):

self.mert[i] = lowest_32_bits(
f*(self.mert[i - 1] ˆ (self.mert[i - 1] >> (w - 2))) + i)

def extract_number(self):
’’’
EFFECTS: Extract a tempered value based on mert[index]

and call twist() every n numbers.
’’’
if self.index == n:

self.twist()
y = self.mert[self.index]
y = y ˆ ((y >> u) & d)
y = y ˆ ((y << s) & b)
y = y ˆ ((y << t) & c)
y = y ˆ (y >> l)
self.index = self.index + 1
return (float(lowest_32_bits(y)) / 0xffffffff)

def twist(self):
’’’
EFFECTS: Generate the next n values from the series x_i.
’’’
for i in range(0, n):

x = lowest_32_bits((self.mert[i] & upper_mask) +
(self.mert[(i + 1) % n] & lower_mask))

temp = x >> 1
if x % 2 != 0:

temp = temp ˆ a
self.mert[i] = self.mert[(i + m) % n] ˆ temp

self.index = 0

def hist_plot(length, seed, data):
’’’
EFFECTS: Plot the distribution of given random samples.
’’’
mean = np.mean(data)
var = np.var(data)
plt.figure(figsize=(11, 6), dpi=128)
title = ’The distribution of ’ + \

str(length) + ’ samples. (Mersenne twister, seed = ’ + str(seed) + ’)’

Project 1 Team 13 Page 13 of 13

plt.hist(data, bins=range(0, 110, 10), color=’#38B0DE’,
alpha=0.7, edgecolor=’black’, density=True)

plt.grid(alpha=0.2)
plt.title(title, fontsize=20, pad=20)
plt.xticks(np.arange(0, 101, 10), fontsize=14)
plt.yticks(fontsize=14)
plt.ylim(0, 0.0165)
plt.text(34, 0.0124, ’ mean = %.2f \nvariance = %.2f’ % (mean, var),

family=’fantasy’, fontsize=20, style=’italic’, color=’mediumvioletred’)
plt.savefig(’mt’ + str(length))

def main():
’’’
The main function.
’’’
seed = 5489 # 5489 is the default seed used on construction or seeding in C++.
my_MT = MT19937(seed)
result = []
length = 100000
for _ in range(length):

result.append(int(my_MT.extract_number() * 100))
print(result)
hist_plot(length, seed, result)

if __name__ == ’__main__’:
main()

